Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.193
Filtrar
1.
Sci Rep ; 13(1): 19182, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932303

RESUMO

Simultaneous intracellular depolymerization of xylo-oligosaccharides (XOS) and acetate fermentation by engineered Saccharomyces cerevisiae offers significant potential for more cost-effective second-generation (2G) ethanol production. In the present work, the previously engineered S. cerevisiae strain, SR8A6S3, expressing enzymes for xylose assimilation along with an optimized route for acetate reduction, was used as the host for expressing two ß-xylosidases, GH43-2 and GH43-7, and a xylodextrin transporter, CDT-2, from Neurospora crassa, yielding the engineered SR8A6S3-CDT-2-GH34-2/7 strain. Both ß-xylosidases and the transporter were introduced by replacing two endogenous genes, GRE3 and SOR1, that encode aldose reductase and sorbitol (xylitol) dehydrogenase, respectively, and catalyse steps in xylitol production. The engineered strain, SR8A6S3-CDT-2-GH34-2/7 (sor1Δ gre3Δ), produced ethanol through simultaneous XOS, xylose, and acetate co-utilization. The mutant strain produced 60% more ethanol and 12% less xylitol than the control strain when a hemicellulosic hydrolysate was used as a mono- and oligosaccharide source. Similarly, the ethanol yield was 84% higher for the engineered strain using hydrolysed xylan, compared with the parental strain. Xylan, a common polysaccharide in lignocellulosic residues, enables recombinant strains to outcompete contaminants in fermentation tanks, as XOS transport and breakdown occur intracellularly. Furthermore, acetic acid is a ubiquitous toxic component in lignocellulosic hydrolysates, deriving from hemicellulose and lignin breakdown. Therefore, the consumption of XOS, xylose, and acetate expands the capabilities of S. cerevisiae for utilization of all of the carbohydrate in lignocellulose, potentially increasing the efficiency of 2G biofuel production.


Assuntos
Saccharomyces cerevisiae , Xilosidases , Saccharomyces cerevisiae/metabolismo , Xilanos/metabolismo , Xilose/metabolismo , Etanol/metabolismo , Engenharia Metabólica , Xilitol/metabolismo , Oligossacarídeos/metabolismo , Fermentação , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Xilosidases/metabolismo , Acetatos/metabolismo
2.
Enzyme Microb Technol ; 171: 110319, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37672961

RESUMO

Rice husk is an abundant agricultural waste generated from rice production, but its application is limited. Considering its complex components, the rice husk was hydrolyzed by different enzymes to enhance its saccharification. In this study, saccharification of the rice husk by cellulase, xylosidase, and xylanase was first investigated. The synergistic effect of LPMO on the above hydrolases and different enzyme combinations in the saccharification process was then explored. Thereafter, the formulation of the enzyme cocktail and the degradation conditions were optimized to obtain the highest saccharification efficiency. The results showed that the optimum enzyme cocktail consists of Celluclast 1.5 L (83.3 mg/g substrate), the key enzymes in the saccharification process, worked with BpXyl (20 mg/g substrate), BpXyn11 (24 mg/g substrate), and R17L/N25G (4 mg/g substrate). The highest reducing sugar concentration (1.19 mg/mL) was obtained at pH 6.0 and 60 â„ƒ for 24 h. Fourier transform infrared spectroscopy and scanning electron microscopy were employed to characterize the structural changes in the rice husk after degradation. The results showed that the key chemical bonds in cellulose and hemicellulose were broken. This study illuminated the concept of saccharifying lignocellulose from rice husk using LPMO synergistically assisted combined-hydrolase including cellulase, xylosidase, and xylanase, and provided a theoretical basis for lignocellulose biodegradation.


Assuntos
Celulase , Oryza , Xilosidases , Oxigenases de Função Mista/metabolismo , Oryza/metabolismo , Polissacarídeos/metabolismo , Celulase/metabolismo , Xilosidases/metabolismo
3.
Carbohydr Res ; 532: 108901, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37487384

RESUMO

Hemicelluloses are the second most abundant polysaccharide in plant biomass, in which xylan is the main constituent. Aiming at the total degradation of xylan and the obtention of fermentable sugars, several enzymes acting synergistically are required, especially ß-xylosidases. In this study, ß-xylosidase from Geobacillus thermodenitrificans (GtXyl) was expressed in E. coli BL21 and characterized. The enzyme GtXyl has been grouped within the family of glycoside hydrolases 43 (GH43). Results showed that GtXyl obtained the highest activity at pH 5.0 and temperature of 60 °C. In the additive's tests, the enzyme remained stable in the presence of metal ions and EDTA, and showed high tolerance to xylose, with a relative activity of 55.4% at 400 mM. The enzyme also presented bifunctional activity of ß-xylosidase and α-l-arabinofuranosidase, with the highest activity on the substrate p-nitrophenyl-ß-d-xylopyranoside. The specific activity on p-nitrophenyl-ß-d-xylopyranoside was 18.33 U mg-1 and catalytic efficiency of 20.21 mM-1 s-1, which is comparable to other ß-xylosidases reported in the literature. Putting together, the GtXyl enzyme presented interesting biochemical characteristics that are desirable for the application in the enzymatic hydrolysis of plant biomass, such as activity at higher temperatures, high thermostability and stability to metal ions.


Assuntos
Xilose , Xilosidases , Xilose/química , Xilanos/metabolismo , Escherichia coli/metabolismo , Xilosidases/metabolismo , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Especificidade por Substrato
4.
Appl Microbiol Biotechnol ; 107(7-8): 2335-2349, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36877249

RESUMO

ß-Xylosidases catalyze the hydrolysis of xylooligosaccharides to xylose in the final step of hemicellulose degradation. AnBX, which is a GH3 ß-xylosidase from Aspergillus niger, has a high catalytic efficiency toward xyloside substrates. In this study, we report the three-dimensional structure and the identification of catalytic and substrate binding residues of AnBX by performing site-directed mutagenesis, kinetic analysis, and NMR spectroscopy-associated analysis of the azide rescue reaction. The structure of the E88A mutant of AnBX, determined at 2.5-Å resolution, contains two molecules in the asymmetric unit, each of which is composed of three domains, namely an N-terminal (ß/α)8 TIM-barrel-like domain, an (α/ß)6 sandwich domain, and a C-terminal fibronectin type III domain. Asp288 and Glu500 of AnBX were experimentally confirmed to act as the catalytic nucleophile and acid/base catalyst, respectively. The crystal structure revealed that Trp86, Glu88 and Cys289, which formed a disulfide bond with Cys321, were located at subsite -1. Although the E88D and C289W mutations reduced catalytic efficiency toward all four substrates tested, the substitution of Trp86 with Ala, Asp and Ser increased the substrate preference for glucoside relative to xyloside substrates, indicating that Trp86 is responsible for the xyloside specificity of AnBX. The structural and biochemical information of AnBX obtained in this study provides invaluable insight into modulating the enzymatic properties for the hydrolysis of lignocellulosic biomass. KEY POINTS: • Asp288 and Glu500 of AnBX are the nucleophile and acid/base catalyst, respectively • Glu88 and the Cys289-Cys321 disulfide bond are crucial for the catalytic activity of AnBX • The W86A and W86S mutations in AnBX increased the preference for glucoside substrates.


Assuntos
Aspergillus niger , Xilosidases , Aspergillus niger/metabolismo , Cinética , Aminoácidos , Domínio Catalítico , Xilosidases/metabolismo , Catálise , Glucosídeos , Dissulfetos , Especificidade por Substrato , Glicosídeo Hidrolases/metabolismo
5.
Bioorg Chem ; 132: 106364, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706530

RESUMO

Among the flavonoids of epimedium, epimedin B, epimedin C, and icariin are considered to be representative components and their structures are quite similar. Besides sharing the same backbone, the main difference is the sugar groups attached at the positions of C-3 and C-7. Despite their structural similarities, their potencies differ significantly, and only icariin is currently included in the Chinese Pharmacopoeia as a quality marker (Q-marker) for epimedium flavonoids. Furthermore, icariin has the functions of anti-aging, anti-inflammation, antioxidation, anti-osteoporosis, and ameliorating fibrosis. We used bioinformatics to look for the GH43 family ß-xylosidase genes BbXyl from Bifidobacterium breve K-110, which has a length of 1347 bp and codes for 448 amino acids. This will allow us to convert epimedin B and epimedin C into icariin in a specific way. The expression level of recombinant BbXyl in TB medium containing 1 % inulin as carbon source, with an inducer concentration of 0.05 mmol/L and a temperature of 28 °C, was 86.4 U/mL. Previous studies found that the α-l-rhamnosidase BtRha could convert epoetin C to produce icariin, so we combined BbXyl and BtRha to catalyze the conversion of epimedium total flavonoids in vitro and in vivo to obtain the product icariin. Under optimal conditions, in vitro hydrolysis of 5 g/L of total flavonoids of epimedium eventually yielded a concentration of icariin of 678.1 µmol/L. To explore the conversion of total flavonoids of epimedium in vivo. Under the optimal conditions, the yield of icariin reached 97.27 µmol/L when the total flavonoid concentration of epimedium was 1 g/L. This study is the first to screen xylosidases for the targeted conversion of epimedin B to produce icariin, and the first to report that epimedin B and epimedin C in the raw epimedium flavonoids can convert efficiently to icariin by a collaborative of ß-xylosidase and α-l-rhamnosidase.


Assuntos
Bifidobacterium breve , Epimedium , Xilosidases , Epimedium/química , Bifidobacterium breve/metabolismo , Flavonoides/química , Xilosidases/genética , Xilosidases/metabolismo , Biotransformação
6.
Enzyme Microb Technol ; 162: 110141, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36265247

RESUMO

A metagenomic library of mangrove soil samples consisting of approximately 11,000 clones was constructed, and a rare bifunctional cellobiohydrolase/ß-xylosidase Cbh2124 was identified by functional screening. Cbh2124 displayed the highest homology (56.43%) with a protein of the glycoside hydrolase 10 (GH10) family from Proteobacteria. Phylogenetic analysis confirmed that Cbh2124 belongs to the GH10 family. The recombinant enzyme showed a strong cellobiohydrolase activity and a relatively high ß-xylosidase activity, and its catalytic efficiency to the cellobiose substrate was as high as 1.27 × 105 s-1·mM-1, the highest efficiency among reported cellobiohydrolases. Of particular interest, some enzymatic properties of the ß-xylosidase activity of Cbh2124 were significantly different from those of the cellobiohydrolase activity. The optimal pH and temperature of the cellobiohydrolase activity of Cbh2124 was 6.4 and 36 °C, and the activity was essentially lost after treatment at 45 °C for 1 h. The optimal pH and temperature of the ß-xylosidase activity of Cbh2124 was 8.0 and 60 °C, and the residual activity was still over 90% after treatment at 80 °C for 6 h. The molecular docking results of the ß-xylosidase activity of Cbh2124 revealed the additional presence of catalytic amino acids Ser175 and Lys420, thus increasing the number of hydrogen bonds involved in the catalytic process, which possibly let to the improved thermostability compared with that of the cellobiohydrolase activity.


Assuntos
Celulose 1,4-beta-Celobiosidase , Xilosidases , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Solo , Filogenia , Simulação de Acoplamento Molecular , Estabilidade Enzimática , Especificidade por Substrato , Concentração de Íons de Hidrogênio , Xilosidases/metabolismo , Clonagem Molecular , Glicosídeo Hidrolases/metabolismo
7.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430787

RESUMO

A thermo-acidophilic bacterium, Alicyclobacillus mali FL18, was isolated from a hot spring of Pisciarelli, near Naples, Italy; following genome analysis, a novel putative ß-xylosidase, AmßXyl, belonging to the glycosyl hydrolase (GH) family 3 was identified. A synthetic gene was produced, cloned in pET-30a(+), and expressed in Escherichia coli BL21 (DE3) RIL. The purified recombinant protein, which showed a dimeric structure, had optimal catalytic activity at 80 °C and pH 5.6, exhibiting 60% of its activity after 2 h at 50 °C and displaying high stability (more than 80%) at pH 5.0-8.0 after 16 h. AmßXyl is mainly active on both para-nitrophenyl-ß-D-xylopyranoside (KM 0.52 mM, kcat 1606 s-1, and kcat/KM 3088.46 mM-1·s-1) and para-nitrophenyl-α-L-arabinofuranoside (KM 10.56 mM, kcat 2395.8 s-1, and kcat/KM 226.87 mM-1·s-1). Thin-layer chromatography showed its ability to convert xylooligomers (xylobiose and xylotriose) into xylose, confirming that AmßXyl is a true ß-xylosidase. Furthermore, no inhibitory effect on enzymatic activity by metal ions, detergents, or EDTA was observed except for 5 mM Cu2+. AmßXyl showed an excellent tolerance to organic solvents; in particular, the enzyme increased its activity at high concentrations (30%) of organic solvents such as ethanol, methanol, and DMSO. Lastly, the enzyme showed not only a good tolerance to inhibition by xylose, arabinose, and glucose, but was activated by 0.75 M xylose and up to 1.5 M by both arabinose and glucose. The high tolerance to organic solvents and monosaccharides together with other characteristics reported above suggests that AmßXyl may have several applications in many industrial fields.


Assuntos
Monossacarídeos , Xilosidases , Xilose/metabolismo , Arabinose , Especificidade por Substrato , Cinética , Concentração de Íons de Hidrogênio , Xilosidases/metabolismo , Glucose , Solventes
8.
Bioprocess Biosyst Eng ; 45(10): 1705-1717, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36063213

RESUMO

As a promising feedstock, alkali-extracted xylan from lignocellulosic biomass is desired for producing xylose, which can be used for renewable biofuels production. In this study, an efficient pathway has been established for low-cost and high-yield production of xylose by hydrolysis of alkali-extracted xylan from agricultural wastes using an endo-1,4-xylanase (XYLA) from Bacillus safensis TCCC 111022 and a ß-xylosidase (XYLO) from B. pumilus TCCC 11573. The optimum activities of recombinant XYLA (rXYLA) and XYLO (rXYLO) were 60 â„ƒ and pH 8.0, and 30 â„ƒ and pH 7.0, respectively. They were stable over a broad pH range (pH 6.0-11.0 and 7.0-10.0). rXYLO showed a relatively high xylose tolerance up to 100 mM. Furthermore, the yield of xylose from wheat straw, rice straw, corn stover, corncob and sugarcane bagasse by rXYLA and rXYLO was 63.77%, 71.76%, 68.55%, 53.81%, and 58.58%, respectively. This study demonstrated a strategy to produce xylose from agricultural wastes by integrating alkali-extracted xylan and enzymatic hydrolysis.


Assuntos
Bacillus , Saccharum , Xilosidases , Álcalis , Bacillus/metabolismo , Biocombustíveis , Celulose , Endo-1,4-beta-Xilanases/metabolismo , Hidrólise , Saccharum/metabolismo , Xilanos , Xilose/metabolismo , Xilosidases/metabolismo
9.
Plant Physiol ; 189(3): 1794-1813, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35485198

RESUMO

Plant cell walls constitute physical barriers that restrict access of microbial pathogens to the contents of plant cells. The primary cell wall of multicellular plants predominantly consists of cellulose, hemicellulose, and pectin, and its composition can change upon stress. BETA-XYLOSIDASE4 (BXL4) belongs to a seven-member gene family in Arabidopsis (Arabidopsis thaliana), one of which encodes a protein (BXL1) involved in cell wall remodeling. We assayed the influence of BXL4 on plant immunity and investigated the subcellular localization and enzymatic activity of BXL4, making use of mutant and overexpression lines. BXL4 localized to the apoplast and was induced upon infection with the necrotrophic fungal pathogen Botrytis cinerea in a jasmonoyl isoleucine-dependent manner. The bxl4 mutants showed a reduced resistance to B. cinerea, while resistance was increased in conditional overexpression lines. Ectopic expression of BXL4 in Arabidopsis seed coat epidermal cells rescued a bxl1 mutant phenotype, suggesting that, like BXL1, BXL4 has both xylosidase and arabinosidase activity. We conclude that BXL4 is a xylosidase/arabinosidase that is secreted to the apoplast and its expression is upregulated under pathogen attack, contributing to immunity against B. cinerea, possibly by removal of arabinose and xylose side-chains of polysaccharides in the primary cell wall.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Xilosidases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Xilosidases/genética , Xilosidases/metabolismo
10.
Biosci Biotechnol Biochem ; 86(7): 855-864, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35441671

RESUMO

MeXyl31, a member of glycoside hydrolase family 31 (GH31), is the α-xylosidase isolated from a soil metagenomic library. The enzyme degrades α-xylosyl substrate such as isoprimeverose, α-d-xylopyranosyl-(1→6)-glucopyranose. The crystal structure of MeXyl31 was determined at 1.80 Å resolution. MeXyl31 forms the tetrameric state. The complexed structure with a xylose in the -1 subsite (α-xylose binding site) shows that the enzyme strictly recognizes α-xylose. Structural comparison between MeXyl31 and its homologue, Aspergillus niger α-xylosidase in GH31, gave insights into the positive subsite of MeXyl31. First, in the tetrameric enzyme, two monomers (a catalytic monomer and the adjacent monomer), are involved in substrate recognition. Second, the adjacent monomer composes a part of positive subsites in MeXyl31. Docking simulation and site-directed mutagenesis suggested that the Arg100 from the adjacent monomer is partially involved in the recognizing of a glucopyranose of isoprimeverose.


Assuntos
Glicosídeo Hidrolases , Xilosidases , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Metagenoma , Solo , Especificidade por Substrato , Xilose , Xilosidases/metabolismo
11.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328413

RESUMO

Xylan is one of the major structural components of the plant cell wall. Xylan present in the human diet reaches the large intestine undigested and becomes a substrate to species of the gut microbiota. Here, we characterised the capacity of Limosilactobacillus reuteri and Blautia producta strains to utilise xylan derivatives. We showed that L. reuteri ATCC 53608 and B. producta ATCC 27340 produced ß-D-xylosidases, enabling growth on xylooligosaccharide (XOS). The recombinant enzymes were highly active on artificial (p-nitrophenyl ß-D-xylopyranoside) and natural (xylobiose, xylotriose, and xylotetraose) substrates, and showed transxylosylation activity and tolerance to xylose inhibition. The enzymes belong to glycoside hydrolase family 120 with Asp as nucleophile and Glu as proton donor, as shown by homology modelling and confirmed by site-directed mutagenesis. In silico analysis revealed that these enzymes were part of a gene cluster in L. reuteri but not in Blautia strains, and quantitative proteomics identified other enzymes and transporters involved in B. producta XOS utilisation. Based on these findings, we proposed a model for an XOS metabolism pathway in L. reuteri and B. producta strains. Together with phylogenetic analyses, the data also revealed the extended xylanolytic potential of the gut microbiota.


Assuntos
Xilanos , Xilosidases , Bactérias/genética , Bactérias/metabolismo , Glucuronatos , Humanos , Oligossacarídeos , Filogenia , Especificidade por Substrato , Xilanos/metabolismo , Xilosidases/metabolismo
12.
J Biol Chem ; 298(3): 101670, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120929

RESUMO

Xylan is the most common hemicellulose in plant cell walls, though the structure of xylan polymers differs between plant species. Here, to gain a better understanding of fungal xylan degradation systems, which can enhance enzymatic saccharification of plant cell walls in industrial processes, we conducted a comparative study of two glycoside hydrolase family 3 (GH3) ß-xylosidases (Bxls), one from the basidiomycete Phanerochaete chrysosporium (PcBxl3), and the other from the ascomycete Trichoderma reesei (TrXyl3A). A comparison of the crystal structures of the two enzymes, both with saccharide bound at the catalytic center, provided insight into the basis of substrate binding at each subsite. PcBxl3 has a substrate-binding pocket at subsite -1, while TrXyl3A has an extra loop that contains additional binding subsites. Furthermore, kinetic experiments revealed that PcBxl3 degraded xylooligosaccharides faster than TrXyl3A, while the KM values of TrXyl3A were lower than those of PcBxl3. The relationship between substrate specificity and degree of polymerization of substrates suggested that PcBxl3 preferentially degrades xylobiose (X2), while TrXyl3A degrades longer xylooligosaccharides. Moreover, docking simulation supported the existence of extended positive subsites of TrXyl3A in the extra loop located at the N-terminus of the protein. Finally, phylogenetic analysis suggests that wood-decaying basidiomycetes use Bxls such as PcBxl3 that act efficiently on xylan structures from woody plants, whereas molds use instead Bxls that efficiently degrade xylan from grass. Our results provide added insights into fungal efficient xylan degradation systems.


Assuntos
Ascomicetos , Phanerochaete , Xilanos , Xilosidases , Ascomicetos/enzimologia , Ascomicetos/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Phanerochaete/enzimologia , Phanerochaete/genética , Filogenia , Especificidade por Substrato , Xilanos/metabolismo , Xilosidases/química , Xilosidases/genética , Xilosidases/metabolismo
13.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164030

RESUMO

Xylanases are the enzymes that catalyze the breakdown of the main hemicellulose present in plant cell walls. They have attracted attention due to their biotechnological potential for the preparation of industrially interesting products from lignocellulose. While many xylanases have been characterized from bacteria and filamentous fungi, information on yeast xylanases is scarce and no yeast xylanase belonging to glycoside hydrolase (GH) family 30 has been described so far. Here, we cloned, expressed and characterized GH30 xylanase SlXyn30A from the yeast Sugiyamaella lignohabitans. The enzyme is active on glucuronoxylan (8.4 U/mg) and rhodymenan (linear ß-1,4-1,3-xylan) (3.1 U/mg) while its activity on arabinoxylan is very low (0.03 U/mg). From glucuronoxylan SlXyn30A releases a series of acidic xylooligosaccharides of general formula MeGlcA2Xyln. These products, which are typical for GH30-specific glucuronoxylanases, are subsequently shortened at the non-reducing end, from which xylobiose moieties are liberated. Xylobiohydrolase activity was also observed during the hydrolysis of various xylooligosaccharides. SlXyn30A thus expands the group of glucuronoxylanases/xylobiohydrolases which has been hitherto represented only by several fungal GH30-7 members.


Assuntos
Hidrolases/metabolismo , Xilosidases/metabolismo , Leveduras/enzimologia , Sequência de Aminoácidos , Hidrolases/química , Homologia de Sequência de Aminoácidos
14.
Sci Rep ; 12(1): 405, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013392

RESUMO

The carbohydrate-hydrolyzing enzymes play a crucial role in increasing the phenolic content and nutritional properties of polysaccharides substrate, essential for cost-effective industrial applications. Also, improving the feed efficiency of poultry is essential to achieve significant economic benefits. The current study introduced a novel thermostable metagenome-derived xylanase named PersiXyn8 and investigated its synergistic effect with previously reported α-amylase (PersiAmy3) to enhance poultry feed utilization. The potential of the enzyme cocktail in the degradation of poultry feed was analyzed and showed 346.73 mg/g poultry feed reducing sugar after 72 h of hydrolysis. Next, the impact of solid-state fermentation on corn quality was investigated in the presence and absence of enzymes. The phenolic content increased from 36.60 mg/g GAE in control sample to 68.23 mg/g in the presence of enzymes. In addition, the enzyme-treated sample showed the highest reducing power OD 700 of 0.217 and the most potent radical scavenging activity against ABTS (40.36%) and DPPH (45.21%) radicals. Moreover, the protein and ash contents of the fermented corn increased by 4.88% and 6.46%, respectively. These results confirmed the potential of the carbohydrate-hydrolyzing enzymes cocktail as a low-cost treatment for improving the phenolic content, antioxidant activity, and nutritional values of corn for supplementation of corn-based poultry feed.


Assuntos
Ração Animal , Manipulação de Alimentos , Valor Nutritivo , Aves Domésticas , Xilosidases/metabolismo , Zea mays/metabolismo , alfa-Amilases/metabolismo , Animais , Fermentação , Hidrólise , Fenóis/metabolismo , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato , Açúcares/metabolismo , Xilosidases/genética , Zea mays/microbiologia
15.
Appl Microbiol Biotechnol ; 106(2): 675-687, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34971412

RESUMO

α-Xylosidases release the α-D-xylopyranosyl side chain from di- and oligosaccharides derived from xyloglucans and are involved in xyloglucan degradation. In this study, an extracellular α-xylosidase, named AxyB, is identified and characterized in Aspergillus oryzae. AxyB belongs to the glycoside hydrolase family 31 and releases D-xylose from isoprimeverose (α-D-xylopyranosyl-(1 → 6)-D-glucopyranose) and xyloglucan oligosaccharides. In the hydrolysis of xyloglucan oligosaccharides (XLLG, Glc4Xyl3Gal2 nonasaccharide; XLXG/XXLG, Glc4Xyl3Gal1 octasaccharide; and XXXG, Glc4Xyl3 heptasaccharide), AxyB releases one molecule of the xylopyranosyl side chain attached to the non-reducing end of the ß-1,4-glucan main chain of these xyloglucan oligosaccharides to yield GLLG (Glc4Xyl2Gal2), GLXG/GXLG (Glc4Xyl2Gal1), and GXXG (Glc4Xyl2). A. oryzae has both extracellular and intracellular α-xylosidase, suggesting that xyloglucan oligosaccharides are degraded by a combination of isoprimeverose-producing oligoxyloglucan hydrolase and intracellular α-xylosidase and a combination of extracellular α-xylosidase and ß-glucosidase(s) in A. oryzae. KEY POINTS: • An extracellular α-xylosidase, AxyB, is identified in Aspergillus oryzae. • AxyB releases the xylopyranosyl side chain from xyloglucan oligosaccharides. • Different sets of glycosidases degrade xyloglucan oligosaccharides in A. oryzae.


Assuntos
Aspergillus oryzae , Xilosidases , Aspergillus oryzae/metabolismo , Glucanos , Oligossacarídeos , Especificidade por Substrato , Xilanos , Xilosidases/genética , Xilosidases/metabolismo
16.
Mol Biotechnol ; 64(2): 130-143, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34580813

RESUMO

The pulp and paper industry discharges massive amount of wastewater containing hazardous organochlorine compounds released during different processing stages. Therefore, some cost-effective and nonpolluting practices such as enzymatic treatments are required for the potential mitigation of effluents released in the environment. Various xylanolytic enzymes such as xylanases, laccases, cellulases and hemicellulases are used to hydrolyse raw materials in the paper manufacturing industry. These enzymes are used either individually or in combination, which has the efficient potential to be considered for bio-deinking and bio-bleaching components. They are highly dynamic, renewable, and high in specificity for enhancing paper quality. The xylanase act on the xylan and cellulases act on the cellulose fibers, and thus increase the bleaching efficacy of paper. Similarly, hemicellulase enzyme like endo-xylanases, arabinofuranosidase and ß-D-xylosidases have been described as functional properties towards the biodegradation of biomass. In contrast, laccase enzymes act as multi-copper oxidoreductases, bleaching the paper by the oxidation and reduction process. Laccases possess low redox potential compared to other enzymes, which need some redox mediators to catalyze. The enzymatic process can be affected by various factors such as pH, temperature, metal ions, incubation periods, etc. These factors can either increase or decrease the efficiency of the enzymes. This review draws attention to the xylanolytic enzyme-based advanced technologies for pulp bleaching in the paper industry.


Assuntos
Biotecnologia/métodos , Enzimas , Indústrias , Papel , Enzimas/química , Enzimas/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Indústrias/métodos , Lacase/química , Lacase/metabolismo , Lignina , Xilanos/metabolismo , Xilosidases/química , Xilosidases/metabolismo
17.
Mol Biotechnol ; 64(2): 187-198, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34580814

RESUMO

Xylanases (EC 3.2.1.8) have been considered as a potential green solution for the sustainable development of a wide range of industries including pulp and paper, food and beverages, animal feed, pharmaceuticals, and biofuels because they are the key enzymes that degrade the xylosidic linkages of xylan, the major component of the second most abundant raw material worldwide. Therefore, there is a critical need for the industrialized xylanases which must have high specific activity, be tolerant to organic solvent or detergent and be active during a wide range of conditions, such as high temperature and pH. In this study, an extracellular xylanase was purified from the culture broth of Aspergillus niger VTCC 017 for primary structure determination and properties characterization. The successive steps of purification comprised centrifugation, Sephadex G-100 filtration, and DEAE-Sephadex chromatography. The purified xylanase (specific activity reached 6596.79 UI/mg protein) was a monomer with a molecular weight of 37 kDa estimating from SDS electrophoresis. The results of LC/MS suggested that the purified protein is indeed an endo-1,4-ß-D-xylanase. The purified xylanase showed the optimal temperature of 55 °C, and pH 6.5 with a stable xylanolytic activity within the temperature range of 45-50 °C, and within the pH range of 5.0-8.0. Most divalent metal cations including Zn2+, Fe2+, Mg2+, Cu2+, Mn2+ showed some inhibition of xylanase activity while the monovalent metal cations such as K+ and Ag+ exhibited slight stimulating effects on the enzyme activity. The introduction of 10-30% different organic solvents (n-butanol, acetone, isopropanol) and several detergents (Triton X-100, Tween 20, and SDS) slightly reduced the enzyme activity. Moreover, the purified xylanase seemed to be tolerant to methanol and ethanol and was even stimulated by Tween 80. Overall, with these distinctive properties, the putative xylanase could be a successful candidate for numerous industrial uses.


Assuntos
Aspergillus niger/enzimologia , Proteínas Fúngicas/isolamento & purificação , Xilosidases/isolamento & purificação , Xilosidases/metabolismo , Detergentes/química , Dextranos , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Filtração/métodos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Metais/química , Solventes/química , Temperatura , Xilosidases/química
18.
Int J Biol Macromol ; 193(Pt B): 1350-1361, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740694

RESUMO

Xylanase enzyme has been classified as an enzyme belonging to the glycoside hydrolase family. The catalytic action of xylanase is focused on the degradation of xylan, a substrate for this enzyme comprising of a complex arrangement of monosaccharides interlinked with the help of ester and glycosidic bonds. Xylan represents the second most profuse renewable polysaccharide present on earth. Breakage of the ß- 1, 4-glycoside linkage in the xylan polymer is what makes xylanase enzyme an important biocatalyst favoring various applications including treatment of pulp for improving paper quality, improvement of bread quality, treatment of lignocelluloses waste, production of xylose sugar and production of biological fuels. Most recently, xylanase has been exploited in the food industry for the purpose of fruit juice clarification. Turbidity caused by the colloidal polysaccharides present in the freshly squeezed fruit juice poses a setback to the fruit juice industry since the commercial product must be clear and free of excess polysaccharides to improve juice quality and storage life. This review gives an overview of the recent advancements made in regards to xylanase enzyme being used commercially with main focus on its role in fruit juice clarification.


Assuntos
Xilosidases/metabolismo , Animais , Sucos de Frutas e Vegetais , Polissacarídeos/metabolismo , Xilanos/metabolismo , Xilose/metabolismo
19.
Enzyme Microb Technol ; 151: 109921, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649692

RESUMO

ß-Xylosidases are often inhibited by its reaction product xylose or inactivated by high temperature environment, which limited its application in hemicellulosic biomass conversion to fuel and food processing. Remarkably, some ß-xylosidases from GH39 family are tolerant to xylose. Therefore, it is of great significance to elucidate the effect mechanism of xylose on GH39 ß-xylosidases to improve their application. In this paper, based on the homologous model and prediction of protein active pocket constructed by I-TASSA and PyMOL, two putative xylose tolerance relevant sites (283 and 284) were mutated at the bottom of the protein active pocket, where xylose sensitivity and thermostability of Dictyoglomus thermophilum ß-xylosidase Xln-DT were improved by site-directed mutagenesis. The Xln-DT mutant Xln-DT-284ASP and Xln-DT-284ALA showed high xylose tolerance, with the Ki values of 4602 mM and 3708 mM, respectively, which increased by 9-35% compared with the wildtype Xln-DT. The thermostability of mutant Xln-DT-284ASP was significantly improved at 75 and 85 °C, while the activity of the wild enzyme Xln-DT decreased to 40-20%, the activity of the mutant enzyme still remained 100%. The mutant Xln-DT-284ALA showed excellent stability at pH 4.0-7.0, but Xln-DT-284ASP showed slightly decreased activity. Furthermore, in order to explore the key sites and mechanism of xylose's effect on ß-xylosidase activity, the interaction between xylose and enzyme was simulated by molecular docking. Besides binding to the active sites at the bottom of the substrate channel, xylose can also bind to sites in the middle or entrance of the channel with different affinities, which may determine the xylose inhibition of ß-xylosidase. In conclusion, the improved xylose tolerance of mutant enzyme could be more advantageous in the degradation of hemicellulose and the biotransformation of other natural active substances containing xylose. This study supplies new insights into general mechanism of xylose effect on the activity of GH 39 ß-xylosidases as well as related enzymes that modulate their activity via feedback control mechanism.


Assuntos
Xilose , Xilosidases , Bactérias , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Especificidade por Substrato , Xilosidases/genética , Xilosidases/metabolismo
20.
Microbiol Res ; 253: 126886, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34687975

RESUMO

Xylan is one of the major polymeric hemicellulosic constituents of lignocellulosic biomass, and its effective utilization by microorganisms is crucial for the economical production of biofuels. In this study, Paenibacillus physcomitrellae XB exhibited different xylan degradation ability on different substrates of corncob xylan (CCX), oat spelt xylan (OSX), wheat flour arabinoxylan (AX) and beech wood xylan (BWX). The RT-QPCR result showed that two genes (Pph_0602 and Pph_2344) belonging to the glycoside hydrolase family 43 were up-regulated more than 5-fold on CCX and xylose. Substrate-specific assays with purified proteins Ppxyl43A (Pph_0602) and Ppxyl43B (Pph_2344) revealed that both exhibited ß-xylosidase activity toward the chromogenic substrate p-nitrophenyl-ß-D-xylopyranoside, and α-L-arabinofuranosidase activity toward p-nitrophenyl-α-L-arabinofuranoside, indicating their bifunctionality. By testing their degradation characteristics on different natural substrates, it was found that both Ppxyl43A and Ppxyl43B showed similar degradation ability on CCX and OSX. Both enzymes could hydrolyze xylohexaose and xylobiose completely to xylose, but could not hydrolyze BWX and AX, suggesting they mainly hydrolyze xylo-oligosaccharides by ß-xylosidase activity. Further analysis showed that both of them displayed very high pH stability and thermostability on the ß-xylosidase activity, but Ppxy143B exhibited wider pH and temperature ranges, higher pH and temperature stability, was less influenced by metal ions, and had a slower start-up response than Ppxyl43A. Given their predicted structure, it is likely that the enzymatic differences between Ppxyl43A and Ppxyl43B might be related to the extra C-terminus domain (GH43_C2) in Ppxyl43B, which could enhance the enzymatic stability while restricting the substrates' or metal ions' access to the active sites of Ppxyl43B. In conclusion, both Ppxyl43A and Ppxyl43B were ß-xylosidase/α-L-arabinofuranosidase bifunctional enzymes and might be useful in xylan biomass conversion, especially in the hydrolysis of xylo-oligosaccharides into xylose.


Assuntos
Glicosídeo Hidrolases , Paenibacillus , Xilanos , Xilosidases , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Paenibacillus/metabolismo , Xilanos/metabolismo , Xilose/metabolismo , Xilosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...